Session V: Graphene

Matteo Bruna
Graphene: Material in the Flatland

Properties:

- Thinnest imaginable material
- Good (and tunable) electrical conductor
- Strongest ever measured
- Stiffest known material (stiffer than diamond)
- Highly stretchable crystal (up to 20%)
- High flexibility
- Chemical stability
- High charge carrier mobility ($>10^6$ cm2 V$^{-1}$s$^{-1}$)
- High transparency (97.7%)
<table>
<thead>
<tr>
<th>Electronics</th>
<th>Composites</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoelectronics/Quantum computing</td>
<td>Lightweight & Superstrong materials</td>
<td>Electrodes for batteries and supercaps</td>
</tr>
<tr>
<td>Fast photodetectors/Optoelectronics</td>
<td>Epoxy based composites</td>
<td>Fuel cells</td>
</tr>
<tr>
<td>Light emitting devices</td>
<td>Polymer composites</td>
<td>Paper batteries</td>
</tr>
<tr>
<td>Conductive inks (Printed/flexible electronics)</td>
<td>Bone regrowth</td>
<td>Replacement for Indium-Tin-Oxide (ITO)</td>
</tr>
<tr>
<td>RF tags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors</td>
<td>Siloxane base composites</td>
<td>Flexible and transparent solar cells</td>
</tr>
</tbody>
</table>

- “Carbon Nanotubes and Graphene for Electronics Applications: Technologies, Players and Opportunities”, IDTechEx, 2010
Large scale pristine graphene production

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Chemical Vapor Deposition</th>
<th>Carbon Segregation</th>
<th>Liquid Phase Exfoliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting material</td>
<td>Hydrocarbon</td>
<td>Substrate itself</td>
<td>Natural graphite</td>
</tr>
<tr>
<td>Max. Temperature</td>
<td>High (1000 °C)</td>
<td>High (>1000 °C)</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Substrate</td>
<td>Cu or Ni</td>
<td>SiC</td>
<td>None</td>
</tr>
<tr>
<td>Major process steps</td>
<td>3 to 4</td>
<td>3 to 4</td>
<td>2</td>
</tr>
<tr>
<td>Area limited to</td>
<td>Substrate size (m)</td>
<td>Wafer size</td>
<td>Substrate size (>m)</td>
</tr>
</tbody>
</table>
Fields of potential application

<table>
<thead>
<tr>
<th>Electronics</th>
<th>Composites</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoelectronics/Quantum computing</td>
<td>Lightweight & Superstrong materials</td>
<td>Electrodes for batteries and supercaps</td>
</tr>
<tr>
<td>Fast photodetectors/Optoelectronics</td>
<td>Epoxy based composites</td>
<td>Fuel cells</td>
</tr>
<tr>
<td>Light emitting devices</td>
<td>Polymer composites</td>
<td>Paper batteries</td>
</tr>
<tr>
<td>Conductive inks (Printed/flexible electronics) RF tags</td>
<td>Bone regrowth</td>
<td>Replacement for Indium-Tin-Oxide (ITO)</td>
</tr>
<tr>
<td>Sensors</td>
<td>Siloxane base composites</td>
<td>Flexible and transparent solar cells</td>
</tr>
</tbody>
</table>

- “Carbon Nanotubes and Graphene for Electronics Applications: Technologies, Players and Opportunities”, IDTechEx, 2010
Fields of potential application

<table>
<thead>
<tr>
<th>Electronics</th>
<th>Composites</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoelectronics/Quantum computing</td>
<td>Lightweight & Superstrong materials</td>
<td>Electrodes for batteries and supercaps</td>
</tr>
<tr>
<td>Fast photodetectors/Optoelectronics</td>
<td>Epoxy based composites</td>
<td>Fuel cells</td>
</tr>
<tr>
<td>Light emitting devices</td>
<td>Polymer composites</td>
<td>Paper batteries</td>
</tr>
<tr>
<td>Conductive inks (Printed/flexible electronics) RF tags</td>
<td>Bone regrowth</td>
<td>Replacement for Indium-Tin-Oxide (ITO)</td>
</tr>
<tr>
<td>Sensors</td>
<td>Siloxane base composites</td>
<td>Flexible and transparent solar cells</td>
</tr>
</tbody>
</table>

- “Carbon Nanotubes and Graphene for Electronics Applications: Technologies, Players and Opportunities”, IDTechEx, 2010
Graphene production, 2009-2017

- "Carbon Nanotubes and Graphene for Electronics Applications: Technologies, Players and Opportunities", IDTechEx, 2010
Graphene-inks for optoelectronics

1 nm = 1 Billionth of a meter
Graphene-inks for optoelectronics

![Graphene-inks for optoelectronics](image)

- Lateral size (nm)
- Number of flakes
- Number of Layers
- Counts

N=74
Inks adaptable to many present printing techniques

- Ink-jet
- Spray-coating
- Roll to roll
Graphene-inks for optoelectronics

Flexible transparent optoelectronic devices

Thin film transistors

Photovoltaic devices

Highly-doped Er\(^{3+}\) fiber
WDM
Pump laser
PC
ISO
Coupler
Graphene mode-locker
Output

Light
Transparent graphene electrode
Electrode
Polymer/graphene active layer
Graphene electrode
Transparent graphene electrode
Electrode
Graphene inks and CVD for optoelectronics

- Touch screen displays
- Electronic paper
- Photovoltaic cells
- Sensors
- Radio frequency tags
- Smart textile
Our speakers

Professor Ian Kinloch,
Professor of Materials Science,
The nanomaterials group,
University of Manchester (UK)

Dr Gordon Chiu,
VP, Grafoïd and Chief Scientist,
Focus Graphite (Canada)